Chapter 2: Problem 88
Let \(L\) be any tangent line to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{c}\). Show that the sum of the \(x\) - and \(y\) -intercepts of \(L\) is \(c\).
Chapter 2: Problem 88
Let \(L\) be any tangent line to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{c}\). Show that the sum of the \(x\) - and \(y\) -intercepts of \(L\) is \(c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLinear and Quadratic Approximations In Exercises 33 and 34, use a computer algebra system to find the linear approximation $$P_{1}(x)=f(a)+f^{\prime}(a)(x-a)$$ and the quadratic approximation $$P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$$ to the function \(f\) at \(x=a\). Sketch the graph of the function and its linear and quadratic approximations. $$ f(x)=\arctan x, \quad a=0 $$
Find equations of all tangent lines to the graph of \(f(x)=\arccos x\) that have slope -2
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{f(x)=\frac{x+1}{2 x-3}} \quad \frac{\text { Point }}{(2,3)}\)
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=37-\sec ^{3}(2 x)} \quad \frac{\text { Point }}{(0,36)}\)
True or False? In Exercises 137-139, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(y=(1-x)^{1 / 2},\) then \(y^{\prime}=\frac{1}{2}(1-x)^{-1 / 2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.