Chapter 2: Problem 87
The volume of a cube with sides of length \(s\) is given by \(V=s^{3} .\) Find the rate of change of the volume with respect to \(s\) when \(s=4\) centimeters.
Chapter 2: Problem 87
The volume of a cube with sides of length \(s\) is given by \(V=s^{3} .\) Find the rate of change of the volume with respect to \(s\) when \(s=4\) centimeters.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=\frac{1}{x}+\sqrt{\cos x}} \quad \frac{\text { Point }}{\left(\frac{\pi}{2}, \frac{2}{\pi}\right)}\)
The displacement from equilibrium of an object in harmonic motion on the end of a spring is \(y=\frac{1}{3} \cos 12 t-\frac{1}{4} \sin 12 t\) where \(y\) is measured in feet and \(t\) is the time in seconds. Determine the position and velocity of the object when \(t=\pi / 8\).
If the annual rate of inflation averages \(5 \%\) over the next 10 years, the approximate cost \(C\) of goods or services during any year in that decade is \(C(t)=P(1.05)^{t},\) where \(t\) is the time in years and \(P\) is the present cost. (a) If the price of an oil change for your car is presently \(\$ 24.95,\) estimate the price 10 years from now. (b) Find the rate of change of \(C\) with respect to \(t\) when \(t=1\) and \(t=8\) (c) Verify that the rate of change of \(C\) is proportional to \(C\). What is the constant of proportionality?
In Exercises 35 and 36, find an equation of the tangent line to the graph of the equation at the given point. $$ \arctan (x+y)=y^{2}+\frac{\pi}{4}, \quad(1,0) $$
Adiabatic Expansion When a certain polyatomic gas undergoes adiabatic expansion, its pressure \(p\) and volume \(V\) satisfy the equation \(p V^{1.3}=k\), where \(k\) is a constant. Find the relationship between the related rates \(d p / d t\) and \(d V / d t\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.