Chapter 2: Problem 85
Describe the difference between the explicit form of a function and an implicit equation. Give an example of each.
Chapter 2: Problem 85
Describe the difference between the explicit form of a function and an implicit equation. Give an example of each.
All the tools & learning materials you need for study success - in one app.
Get started for freeAngle of Elevation A balloon rises at a rate of 3 meters per second from a point on the ground 30 meters from an observer. Find the rate of change of the angle of elevation of the balloon from the observer when the balloon is 30 meters above the ground.
The normal daily maximum temperatures \(T\) (in degrees Fahrenheit) for Denver, Colorado, are shown in the table. (Source: National Oceanic and Atmospheric Administration). $$ \begin{aligned} &\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Month } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\ \hline \text { Temperature } & 43.2 & 47.2 & 53.7 & 60.9 & 70.5 & 82.1 \\ \hline \end{array}\\\ &\begin{array}{|l|c|c|c|c|c|c|} \hline \text { Month } & \text { Jul } & \text { Aug } & \text { Sep } & \text { Oct } & \text { Nov } & \text { Dec } \\ \hline \text { Temperature } & 88.0 & 86.0 & 77.4 & 66.0 & 51.5 & 44.1 \\ \hline \end{array} \end{aligned} $$(a) Use a graphing utility to plot the data and find a model for the data of the form \(T(t)=a+b \sin (\pi t / 6-c)\) where \(T\) is the temperature and \(t\) is the time in months, with \(t=1\) corresponding to January. (b) Use a graphing utility to graph the model. How well does the model fit the data? (c) Find \(T^{\prime}\) and use a graphing utility to graph the derivative. (d) Based on the graph of the derivative, during what times does the temperature change most rapidly? Most slowly? Do your answers agree with your observations of the temperature changes? Explain.
Consider the equation \(x^{4}=4\left(4 x^{2}-y^{2}\right)\). (a) Use a graphing utility to graph the equation. (b) Find and graph the four tangent lines to the curve for \(y=3\). (c) Find the exact coordinates of the point of intersection of the two tangent lines in the first quadrant.
A television camera at ground level is filming the lift-off of a space shuttle at a point 750 meters from the launch pad. Let \(\theta\) be the angle of elevation of the shuttle and let \(s\) be the distance between the camera and the shuttle (as shown in the figure). Write \(\theta\) as a function of \(s\) for the period of time when the shuttle is moving vertically. Differentiate the result to find \(d \theta / d t\) in terms of \(s\) and \(d s / d t\).
Find the derivative of the function. \(f(t)=\frac{3^{2 t}}{t}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.