Chapter 2: Problem 79
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=37-\sec ^{3}(2 x)} \quad \frac{\text { Point }}{(0,36)}\)
Chapter 2: Problem 79
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=37-\sec ^{3}(2 x)} \quad \frac{\text { Point }}{(0,36)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the second derivative of the function. $$ f(x)=\sec x $$
Determine the point(s) at which the graph of \(y^{4}=y^{2}-x^{2}\) has a horizontal tangent.
In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{y=4-x^{2}-\ln \left(\frac{1}{2} x+1\right)} \quad \frac{\text { Point }}{\left(0,4\right)}\)
In Exercises 35 and 36, find an equation of the tangent line to the graph of the equation at the given point. $$ \arctan (x+y)=y^{2}+\frac{\pi}{4}, \quad(1,0) $$
(a) Find an equation of the normal line to the ellipse \(\frac{x^{2}}{32}+\frac{y^{2}}{8}=1\) at the point (4,2) . (b) Use a graphing utility to graph the ellipse and the normal line. (c) At what other point does the normal line intersect the ellipse?
What do you think about this solution?
We value your feedback to improve our textbook solutions.