Chapter 2: Problem 78
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{f(x)=\frac{x+1}{2 x-3}} \quad \frac{\text { Point }}{(2,3)}\)
Chapter 2: Problem 78
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{f(x)=\frac{x+1}{2 x-3}} \quad \frac{\text { Point }}{(2,3)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that \(\arccos x=\frac{\pi}{2}-\arctan \left(\frac{x}{\sqrt{1-x^{2}}}\right),|x|<1\).
In Exercises \(89-98\), find the derivative of the function. \(f(x)=4^{x}\)
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=e^{-x^{2} / 2} \\ a=0 \end{array} $$
Find the equation(s) of the tangent line(s) to the parabola \(y=x^{2}\) through the given point. (a) \((0, a)\) (b) \((a, 0)\) Are there any restrictions on the constant \(a\) ?
The normal daily maximum temperatures \(T\) (in degrees Fahrenheit) for Denver, Colorado, are shown in the table. (Source: National Oceanic and Atmospheric Administration). $$ \begin{aligned} &\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Month } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\ \hline \text { Temperature } & 43.2 & 47.2 & 53.7 & 60.9 & 70.5 & 82.1 \\ \hline \end{array}\\\ &\begin{array}{|l|c|c|c|c|c|c|} \hline \text { Month } & \text { Jul } & \text { Aug } & \text { Sep } & \text { Oct } & \text { Nov } & \text { Dec } \\ \hline \text { Temperature } & 88.0 & 86.0 & 77.4 & 66.0 & 51.5 & 44.1 \\ \hline \end{array} \end{aligned} $$(a) Use a graphing utility to plot the data and find a model for the data of the form \(T(t)=a+b \sin (\pi t / 6-c)\) where \(T\) is the temperature and \(t\) is the time in months, with \(t=1\) corresponding to January. (b) Use a graphing utility to graph the model. How well does the model fit the data? (c) Find \(T^{\prime}\) and use a graphing utility to graph the derivative. (d) Based on the graph of the derivative, during what times does the temperature change most rapidly? Most slowly? Do your answers agree with your observations of the temperature changes? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.