Chapter 2: Problem 76
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=\sqrt[5]{3 x^{3}+4 x}} \quad \frac{\text { Point }}{(2,2)}\)
Chapter 2: Problem 76
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=\sqrt[5]{3 x^{3}+4 x}} \quad \frac{\text { Point }}{(2,2)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function. \(h(x)=\log _{3} \frac{x \sqrt{x-1}}{2}\)
(a) Find an equation of the normal line to the ellipse \(\frac{x^{2}}{32}+\frac{y^{2}}{8}=1\) at the point (4,2) . (b) Use a graphing utility to graph the ellipse and the normal line. (c) At what other point does the normal line intersect the ellipse?
In Exercises \(115-118,\) evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result. \(h(x)=\frac{1}{9}(3 x+1)^{3}, \quad\left(1, \frac{64}{9}\right)\)
Use the position function \(s(t)=-16 t^{2}+v_{0} t+s_{0}\) for free-falling objects. A silver dollar is dropped from the top of a building that is 1362 feet tall. (a) Determine the position and velocity functions for the coin. (b) Determine the average velocity on the interval [1,2] . (c) Find the instantaneous velocities when \(t=1\) and \(t=2\). (d) Find the time required for the coin to reach ground level. (e) Find the velocity of the coin at impact.
Find an equation of the tangent line to the graph of \(g(x)=\arctan x\) when \(x=1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.