Chapter 2: Problem 75
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{s(t)=\sqrt{t^{2}+2 t+8}} \quad \frac{\text { Point }}{(2,4)}\)
Chapter 2: Problem 75
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{s(t)=\sqrt{t^{2}+2 t+8}} \quad \frac{\text { Point }}{(2,4)}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \((a, b)\) be an arbitrary point on the graph of \(y=1 / x, x>0\). Prove that the area of the triangle formed by the tangent line through \((a, b)\) and the coordinate axes is 2.
Evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result. \(f(x)=\frac{1}{\sqrt{x+4}}, \quad\left(0, \frac{1}{2}\right)\)
The frequency \(F\) of a fire truck siren heard by a stationary observer is \(F=\frac{132,400}{331 \pm v}\) where \(\pm v\) represents the velocity of the accelerating fire truck in meters per second. Find the rate of change of \(F\) with respect to \(v\) when (a) the fire truck is approaching at a velocity of 30 meters per second (use \(-v)\) (b) the fire truck is moving away at a velocity of 30 meters per second (use \(+v\) ).
The normal daily maximum temperatures \(T\) (in degrees Fahrenheit) for Denver, Colorado, are shown in the table. (Source: National Oceanic and Atmospheric Administration). $$ \begin{aligned} &\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Month } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\ \hline \text { Temperature } & 43.2 & 47.2 & 53.7 & 60.9 & 70.5 & 82.1 \\ \hline \end{array}\\\ &\begin{array}{|l|c|c|c|c|c|c|} \hline \text { Month } & \text { Jul } & \text { Aug } & \text { Sep } & \text { Oct } & \text { Nov } & \text { Dec } \\ \hline \text { Temperature } & 88.0 & 86.0 & 77.4 & 66.0 & 51.5 & 44.1 \\ \hline \end{array} \end{aligned} $$(a) Use a graphing utility to plot the data and find a model for the data of the form \(T(t)=a+b \sin (\pi t / 6-c)\) where \(T\) is the temperature and \(t\) is the time in months, with \(t=1\) corresponding to January. (b) Use a graphing utility to graph the model. How well does the model fit the data? (c) Find \(T^{\prime}\) and use a graphing utility to graph the derivative. (d) Based on the graph of the derivative, during what times does the temperature change most rapidly? Most slowly? Do your answers agree with your observations of the temperature changes? Explain.
In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{y=2 e^{1-x^{2}}} \quad \frac{\text { Point }}{\left(1,2\right)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.