Chapter 2: Problem 50
Find the derivative of the function. \(y=\ln \left(\frac{1+e^{x}}{1-e^{x}}\right)\)
Chapter 2: Problem 50
Find the derivative of the function. \(y=\ln \left(\frac{1+e^{x}}{1-e^{x}}\right)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\( \text { Radway Design } \) Cars on a certain roadway travel on a circular arc of radius \(r\). In order not to rely on friction alone to overcome the centrifugal force, the road is banked at an angle of magnitude \(\theta\) from the horizontal (see figure). The banking angle must satisfy the equation \(r g \tan \theta=v^{2},\) where \(v\) is the velocity of the cars and \(g=32\) feet per second per second is the acceleration due to gravity. Find the relationship between the related rates \(d v / d t\) and \(d \theta / d t\)
Use the position function \(s(t)=-16 t^{2}+v_{0} t+s_{0}\) for free-falling objects. A silver dollar is dropped from the top of a building that is 1362 feet tall. (a) Determine the position and velocity functions for the coin. (b) Determine the average velocity on the interval [1,2] . (c) Find the instantaneous velocities when \(t=1\) and \(t=2\). (d) Find the time required for the coin to reach ground level. (e) Find the velocity of the coin at impact.
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=x \ln x \\ a=1 \end{array} $$
Angle of Elevation A balloon rises at a rate of 3 meters per second from a point on the ground 30 meters from an observer. Find the rate of change of the angle of elevation of the balloon from the observer when the balloon is 30 meters above the ground.
Find the derivative of the function. \(g(\alpha)=5^{-\alpha / 2} \sin 2 \alpha\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.