Chapter 2: Problem 5
Find \(d y / d x\) by implicit differentiation. $$ x^{3}-x y+y^{2}=4 $$
Chapter 2: Problem 5
Find \(d y / d x\) by implicit differentiation. $$ x^{3}-x y+y^{2}=4 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(115-118,\) evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result. \(h(x)=\frac{1}{9}(3 x+1)^{3}, \quad\left(1, \frac{64}{9}\right)\)
A 15 -centimeter pendulum moves according to the equation \(\theta=0.2 \cos 8 t,\) where \(\theta\) is the angular displacement from the vertical in radians and \(t\) is the time in seconds. Determine the maximum angular displacement and the rate of change of \(\theta\) when \(t=3\) seconds.
The volume of a cube with sides of length \(s\) is given by \(V=s^{3} .\) Find the rate of change of the volume with respect to \(s\) when \(s=4\) centimeters.
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=x \ln x \\ a=1 \end{array} $$
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=\sec 2 x \\ a=\frac{\pi}{6} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.