Chapter 2: Problem 46
Prove that \(\arccos x=\frac{\pi}{2}-\arctan \left(\frac{x}{\sqrt{1-x^{2}}}\right),|x|<1\).
Chapter 2: Problem 46
Prove that \(\arccos x=\frac{\pi}{2}-\arctan \left(\frac{x}{\sqrt{1-x^{2}}}\right),|x|<1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 103 and \(104,\) the relationship between \(f\) and \(g\) is given. Explain the relationship between \(f^{\prime}\) and \(g^{\prime}\). \(g(x)=f\left(x^{2}\right)\)
In Exercises 15-28, find the derivative of the function. $$ y=8 \arcsin \frac{x}{4}-\frac{x \sqrt{16-x^{2}}}{2} $$
Given that \(g(5)=-3, \quad g^{\prime}(5)=6, \quad h(5)=3,\) and \(h^{\prime}(5)=-2,\) find \(f^{\prime}(5)\) (if possible) for each of the following. If it is not possible, state what additional information is required. (a) \(f(x)=g(x) h(x)\) (b) \(f(x)=g(h(x))\) (c) \(f(x)=\frac{g(x)}{h(x)}\) (d) \(f(x)=[g(x)]^{3}\)
The area of a square with sides of length \(s\) is given by \(A=s^{2} .\) Find the rate of change of the area with respect to \(s\) when \(s=4\) meters.
In Exercises 43 and 44, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. \(\frac{d}{d x}[\arctan (\tan x)]=1\) for all \(x\) in the domain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.