Chapter 2: Problem 4
Find \(d y / d x\) by implicit differentiation. $$ x^{3}+y^{3}=8 $$
Chapter 2: Problem 4
Find \(d y / d x\) by implicit differentiation. $$ x^{3}+y^{3}=8 $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Show that the derivative of an odd function is even. That is, if \(f(-x)=-f(x),\) then \(f^{\prime}(-x)=f^{\prime}(x)\) (b) Show that the derivative of an even function is odd. That is, if \(f(-x)=f(x),\) then \(f^{\prime}(-x)=-f^{\prime}(x)\)
Find equations of all tangent lines to the graph of \(f(x)=\arccos x\) that have slope -2
The volume of a cube with sides of length \(s\) is given by \(V=s^{3} .\) Find the rate of change of the volume with respect to \(s\) when \(s=4\) centimeters.
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=x \ln x \\ a=1 \end{array} $$
Prove (Theorem 2.3) that \(\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}\) for the case in which \(n\) is a rational number. (Hint: Write \(y=x^{p / q}\) in the form \(y^{q}=x^{p}\) and differentiate implicitly. Assume that \(p\) and \(q\) are integers, where \(q>0 .)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.