Chapter 2: Problem 38
In Exercises 37 and 38 , the derivative of the function has the same sign for all \(x\) in its domain, but the function is not one-to-one. Explain. $$ f(x)=\frac{x}{x^{2}-4} $$
Chapter 2: Problem 38
In Exercises 37 and 38 , the derivative of the function has the same sign for all \(x\) in its domain, but the function is not one-to-one. Explain. $$ f(x)=\frac{x}{x^{2}-4} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 35 and 36, find an equation of the tangent line to the graph of the equation at the given point. $$ \arcsin x+\arcsin y=\frac{\pi}{2}, \quad\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) $$
Let \(L\) be any tangent line to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{c}\). Show that the sum of the \(x\) - and \(y\) -intercepts of \(L\) is \(c\).
Linear and Quadratic Approximations In Exercises 33 and 34, use a computer algebra system to find the linear approximation $$P_{1}(x)=f(a)+f^{\prime}(a)(x-a)$$ and the quadratic approximation $$P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}$$ to the function \(f\) at \(x=a\). Sketch the graph of the function and its linear and quadratic approximations. $$ f(x)=\arctan x, \quad a=0 $$
Determine the point(s) at which the graph of \(y^{4}=y^{2}-x^{2}\) has a horizontal tangent.
Find the derivative of the function. \(h(x)=\log _{3} \frac{x \sqrt{x-1}}{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.