Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the slope of the tangent line to the graph at the indicated point. Cissoid: \((4-x) y^{2}=x^{3}\) Point: (2,2)

Short Answer

Expert verified
The slope of the tangent line to the graph at the point (2,2) is 2.25.

Step by step solution

01

Differentiate the given equation implicitly

Differentiate both sides of the equation with respect to x, treating y as a function of x. This gives: \(-y^{2} - 2xy\frac{dy}{dx} = 3x^{2}\)
02

Solve for dy/dx

Isolate \(\frac{dy}{dx}\) to get the derivative of y with respect to x. This gives: \(\frac{dy}{dx} = \frac{y^{2} + 3x^{2}}{2xy}\)
03

Substitute the coordinates of the point into the derivative formula

Substitute x = 2 and y = 2 into \(\frac{dy}{dx} = \frac{y^{2} + 3x^{2}}{2xy}\) to find the slope of the tangent line at the given point. This gives: \(\frac{dy}{dx} = \frac{2^{2} + 3*2^{2}}{2*2*2} = 2.25\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 35 and 36, find an equation of the tangent line to the graph of the equation at the given point. $$ \arcsin x+\arcsin y=\frac{\pi}{2}, \quad\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) $$

Given that \(g(5)=-3, \quad g^{\prime}(5)=6, \quad h(5)=3,\) and \(h^{\prime}(5)=-2,\) find \(f^{\prime}(5)\) (if possible) for each of the following. If it is not possible, state what additional information is required. (a) \(f(x)=g(x) h(x)\) (b) \(f(x)=g(h(x))\) (c) \(f(x)=\frac{g(x)}{h(x)}\) (d) \(f(x)=[g(x)]^{3}\)

Evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result. \(g(t)=\tan 2 t, \quad\left(\frac{\pi}{6}, \sqrt{3}\right)\)

In Exercises 107-110, (a) use a graphing utility to find the derivative of the function at the given point, (b) find an equation of the tangent line to the graph of the function at the given point, and (c) use the utility to graph the function and its tangent line in the same viewing window. \(y=\left(t^{2}-9\right) \sqrt{t+2}, \quad(2,-10)\)

Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=\sec 2 x \\ a=\frac{\pi}{6} \end{array} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free