Chapter 2: Problem 33
Find the derivative of the transcendental function. $$ f(t)=t^{2} \sin t $$
Chapter 2: Problem 33
Find the derivative of the transcendental function. $$ f(t)=t^{2} \sin t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind an equation of the parabola \(y=a x^{2}+b x+c\) that passes through (0,1) and is tangent to the line \(y=x-1\) at (1,0)
In Exercises 35 and 36, find an equation of the tangent line to the graph of the equation at the given point. $$ \arctan (x+y)=y^{2}+\frac{\pi}{4}, \quad(1,0) $$
(a) Find an equation of the normal line to the ellipse \(\frac{x^{2}}{32}+\frac{y^{2}}{8}=1\) at the point (4,2) . (b) Use a graphing utility to graph the ellipse and the normal line. (c) At what other point does the normal line intersect the ellipse?
Evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result. \(g(t)=\tan 2 t, \quad\left(\frac{\pi}{6}, \sqrt{3}\right)\)
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=e^{-x^{2} / 2} \\ a=0 \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.