Chapter 2: Problem 32
Find \(d y / d x\) by implicit differentiation and evaluate the derivative at the indicated point. $$ x \cos y=1, \quad\left(2, \frac{\pi}{3}\right) $$
Chapter 2: Problem 32
Find \(d y / d x\) by implicit differentiation and evaluate the derivative at the indicated point. $$ x \cos y=1, \quad\left(2, \frac{\pi}{3}\right) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe area of a square with sides of length \(s\) is given by \(A=s^{2} .\) Find the rate of change of the area with respect to \(s\) when \(s=4\) meters.
The normal daily maximum temperatures \(T\) (in degrees Fahrenheit) for Denver, Colorado, are shown in the table. (Source: National Oceanic and Atmospheric Administration). $$ \begin{aligned} &\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Month } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\ \hline \text { Temperature } & 43.2 & 47.2 & 53.7 & 60.9 & 70.5 & 82.1 \\ \hline \end{array}\\\ &\begin{array}{|l|c|c|c|c|c|c|} \hline \text { Month } & \text { Jul } & \text { Aug } & \text { Sep } & \text { Oct } & \text { Nov } & \text { Dec } \\ \hline \text { Temperature } & 88.0 & 86.0 & 77.4 & 66.0 & 51.5 & 44.1 \\ \hline \end{array} \end{aligned} $$(a) Use a graphing utility to plot the data and find a model for the data of the form \(T(t)=a+b \sin (\pi t / 6-c)\) where \(T\) is the temperature and \(t\) is the time in months, with \(t=1\) corresponding to January. (b) Use a graphing utility to graph the model. How well does the model fit the data? (c) Find \(T^{\prime}\) and use a graphing utility to graph the derivative. (d) Based on the graph of the derivative, during what times does the temperature change most rapidly? Most slowly? Do your answers agree with your observations of the temperature changes? Explain.
Find the average rate of change of the function over the given interval. Compare this average rate of change with the instantaneous rates of change at the endpoints of the interval. $$ g(x)=x^{2}+e^{x}, \quad[0,1] $$
Prove that \(\arcsin x=\arctan \left(\frac{x}{\sqrt{1-x^{2}}}\right),|x|<1\)
A 15 -centimeter pendulum moves according to the equation \(\theta=0.2 \cos 8 t,\) where \(\theta\) is the angular displacement from the vertical in radians and \(t\) is the time in seconds. Determine the maximum angular displacement and the rate of change of \(\theta\) when \(t=3\) seconds.
What do you think about this solution?
We value your feedback to improve our textbook solutions.