Chapter 2: Problem 31
Find the derivative of the algebraic function. $$ f(x)=\left(3 x^{3}+4 x\right)(x-5)(x+1) $$
Chapter 2: Problem 31
Find the derivative of the algebraic function. $$ f(x)=\left(3 x^{3}+4 x\right)(x-5)(x+1) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{f(x)=\tan ^{2} x} \quad \frac{\text { Point }}{\left(\frac{\pi}{4}, 1\right)}\)
True or False? In Exercises 137-139, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(y\) is a differentiable function of \(u, u\) is a differentiable function of \(v,\) and \(v\) is a differentiable function of \(x,\) then \(\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d v} \frac{d v}{d x}\)
(a) Find an equation of the normal line to the ellipse \(\frac{x^{2}}{32}+\frac{y^{2}}{8}=1\) at the point (4,2) . (b) Use a graphing utility to graph the ellipse and the normal line. (c) At what other point does the normal line intersect the ellipse?
Existence of an Inverse Determine the values of \(k\) such that the function \(f(x)=k x+\sin x\) has an inverse function.
Let \(L\) be any tangent line to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{c}\). Show that the sum of the \(x\) - and \(y\) -intercepts of \(L\) is \(c\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.