Chapter 2: Problem 26
Find an equation of the line that is tangent to the graph of \(f\) and parallel to the given line. Function \(\quad\) Line \(f(x)=\frac{1}{\sqrt{x-1}} \quad x+2 y+7=0\)
Chapter 2: Problem 26
Find an equation of the line that is tangent to the graph of \(f\) and parallel to the given line. Function \(\quad\) Line \(f(x)=\frac{1}{\sqrt{x-1}} \quad x+2 y+7=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{y=2 \tan ^{3} x} \quad \frac{\text { Point }}{\left(\frac{\pi}{4}, 2\right)}\)
Evaluate the second derivative of the function at the given point. Use a computer algebra system to verify your result. \(f(x)=\cos \left(x^{2}\right), \quad(0,1)\)
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{y=\frac{1}{x}+\sqrt{\cos x}} \quad \frac{\text { Point }}{\left(\frac{\pi}{2}, \frac{2}{\pi}\right)}\)
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=x \ln x \\ a=1 \end{array} $$
Verify each differentiation formula. (a) \(\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}\) (b) \(\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}\) (c) \(\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}\) (d) \(\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}\) (e) \(\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.