Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the slope of the graph of the function at the indicated point. Use the derivative feature of a graphing utility to confirm your results. $$ f(x)=-\frac{1}{2}+\frac{7}{5} x^{3} $$ $$ \left(0,-\frac{1}{2}\right) $$

Short Answer

Expert verified
The slope of the graph of the function \( f(x)=-\frac{1}{2}+\frac{7}{5} x^{3} \) at the point \( (0,-\frac{1}{2}) \) is 0.

Step by step solution

01

Find the Derivative

Let's start by finding the derivative of the function. We will use the power rule, which states that the derivative of \(x^n\) is \(n*x^{n-1}\). Hence, the derivative of \(f(x)= -\frac{1}{2}+\frac{7}{5}x^3\) is \(f'(x) = \frac{21}{5}x^2\).
02

Evaluate the Derivative at the Point

Now, we'll plug in the given x-value into the derivative. Here, x=0. So, \(f'(0) = \frac{21}{5}*0^2 = 0\).
03

Interpret the Result

Interpret the answer. The point of interest was (0,-1/2) and the derivative at this point is 0, meaning at this point the slope of the tangent line to the function is 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). \(f(x)=\tan \frac{\pi x}{4}\) \(a=1\)

In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{f(x)=\frac{1}{3} x \sqrt{x^{2}+5}} \quad \frac{\text { Point }}{(2,2)}\)

Find the equation(s) of the tangent line(s) to the parabola \(y=x^{2}\) through the given point. (a) \((0, a)\) (b) \((a, 0)\) Are there any restrictions on the constant \(a\) ?

In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{f(x)=\sin 2 x} \quad \frac{\text { Point }}{(\pi, 0)}\)

Find the average rate of change of the function over the given interval. Compare this average rate of change with the instantaneous rates of change at the endpoints of the interval. $$ f(x)=\cos x, \quad\left[0, \frac{\pi}{3}\right] $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free