Chapter 2: Problem 24
Find the derivative of the algebraic function. $$ f(x)=\frac{x^{3}+3 x+2}{x^{2}+1} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 24
Find the derivative of the algebraic function. $$ f(x)=\frac{x^{3}+3 x+2}{x^{2}+1} $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven that \(g(5)=-3, \quad g^{\prime}(5)=6, \quad h(5)=3,\) and \(h^{\prime}(5)=-2,\) find \(f^{\prime}(5)\) (if possible) for each of the following. If it is not possible, state what additional information is required. (a) \(f(x)=g(x) h(x)\) (b) \(f(x)=g(h(x))\) (c) \(f(x)=\frac{g(x)}{h(x)}\) (d) \(f(x)=[g(x)]^{3}\)
Find the derivative of the function. \(h(x)=\log _{3} \frac{x \sqrt{x-1}}{2}\)
In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{f(x)=\tan ^{2} x} \quad \frac{\text { Point }}{\left(\frac{\pi}{4}, 1\right)}\)
If the annual rate of inflation averages \(5 \%\) over the next 10 years, the approximate cost \(C\) of goods or services during any year in that decade is \(C(t)=P(1.05)^{t},\) where \(t\) is the time in years and \(P\) is the present cost. (a) If the price of an oil change for your car is presently \(\$ 24.95,\) estimate the price 10 years from now. (b) Find the rate of change of \(C\) with respect to \(t\) when \(t=1\) and \(t=8\) (c) Verify that the rate of change of \(C\) is proportional to \(C\). What is the constant of proportionality?
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{f(x)=\frac{x+1}{2 x-3}} \quad \frac{\text { Point }}{(2,3)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.