Chapter 2: Problem 141
Let \(k\) be a fixed positive integer. The \(n\) th derivative of \(\frac{1}{x^{k}-1}\) has the form \(\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}\) where \(P_{n}(x)\) is a polynomial. Find \(P_{n}(1)\).
Chapter 2: Problem 141
Let \(k\) be a fixed positive integer. The \(n\) th derivative of \(\frac{1}{x^{k}-1}\) has the form \(\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}\) where \(P_{n}(x)\) is a polynomial. Find \(P_{n}(1)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \((a, b)\) be an arbitrary point on the graph of \(y=1 / x, x>0\). Prove that the area of the triangle formed by the tangent line through \((a, b)\) and the coordinate axes is 2.
Linear and Quadratic Approximations The linear and quadratic approximations of a function \(f\) at \(x=a\) are \(P_{1}(x)=f^{\prime}(a)(x-a)+f(a)\) and \(P_{2}(x)=\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+f^{\prime}(a)(x-a)+f(a)\) \(\begin{array}{llll}\text { In Exercises } & 133-136, & \text { (a) find the specified linear and }\end{array}\) quadratic approximations of \(f,\) (b) use a graphing utility to graph \(f\) and the approximations, (c) determine whether \(P_{1}\) or \(P_{2}\) is the better approximation, and (d) state how the accuracy changes as you move farther from \(x=a\). $$ \begin{array}{l} f(x)=\sec 2 x \\ a=\frac{\pi}{6} \end{array} $$
The normal daily maximum temperatures \(T\) (in degrees Fahrenheit) for Denver, Colorado, are shown in the table. (Source: National Oceanic and Atmospheric Administration). $$ \begin{aligned} &\begin{array}{|l|l|l|l|l|l|l|} \hline \text { Month } & \text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } & \text { Jun } \\ \hline \text { Temperature } & 43.2 & 47.2 & 53.7 & 60.9 & 70.5 & 82.1 \\ \hline \end{array}\\\ &\begin{array}{|l|c|c|c|c|c|c|} \hline \text { Month } & \text { Jul } & \text { Aug } & \text { Sep } & \text { Oct } & \text { Nov } & \text { Dec } \\ \hline \text { Temperature } & 88.0 & 86.0 & 77.4 & 66.0 & 51.5 & 44.1 \\ \hline \end{array} \end{aligned} $$(a) Use a graphing utility to plot the data and find a model for the data of the form \(T(t)=a+b \sin (\pi t / 6-c)\) where \(T\) is the temperature and \(t\) is the time in months, with \(t=1\) corresponding to January. (b) Use a graphing utility to graph the model. How well does the model fit the data? (c) Find \(T^{\prime}\) and use a graphing utility to graph the derivative. (d) Based on the graph of the derivative, during what times does the temperature change most rapidly? Most slowly? Do your answers agree with your observations of the temperature changes? Explain.
In Exercises \(81-88\), (a) find an equation of the tangent line to the graph of \(f\) at the indicated point, (b) use a graphing utility to graph the function and its tangent line at the point, and (c) use the derivative feature of a graphing utility to confirm your results. \(\frac{\text { Function }}{f(x)=\frac{1}{3} x \sqrt{x^{2}+5}} \quad \frac{\text { Point }}{(2,2)}\)
The area of a square with sides of length \(s\) is given by \(A=s^{2} .\) Find the rate of change of the area with respect to \(s\) when \(s=4\) meters.
What do you think about this solution?
We value your feedback to improve our textbook solutions.