Chapter 2: Problem 106
Find the derivative of \(f(x)=x|x| .\) Does \(f^{\prime \prime}(0)\) exist?
Chapter 2: Problem 106
Find the derivative of \(f(x)=x|x| .\) Does \(f^{\prime \prime}(0)\) exist?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 43 and 44, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. \(\frac{d}{d x}[\arctan (\tan x)]=1\) for all \(x\) in the domain.
Prove that \(\frac{d}{d x}[\cos x]=-\sin x\)
A television camera at ground level is filming the lift-off of a space shuttle at a point 750 meters from the launch pad. Let \(\theta\) be the angle of elevation of the shuttle and let \(s\) be the distance between the camera and the shuttle (as shown in the figure). Write \(\theta\) as a function of \(s\) for the period of time when the shuttle is moving vertically. Differentiate the result to find \(d \theta / d t\) in terms of \(s\) and \(d s / d t\).
Use the position function \(s(t)=-16 t^{2}+v_{0} t+s_{0}\) for free-falling objects. A silver dollar is dropped from the top of a building that is 1362 feet tall. (a) Determine the position and velocity functions for the coin. (b) Determine the average velocity on the interval [1,2] . (c) Find the instantaneous velocities when \(t=1\) and \(t=2\). (d) Find the time required for the coin to reach ground level. (e) Find the velocity of the coin at impact.
In Exercises \(75-80\), evaluate the derivative of the function at the indicated point. Use a graphing utility to verify your result. \(\frac{\text { Function }}{s(t)=\sqrt{t^{2}+2 t+8}} \quad \frac{\text { Point }}{(2,4)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.