Chapter 13: Problem 9
Use Green's Theorem to evaluate the line integral. $$ \begin{array}{l} \int_{C} 2 \arctan \frac{y}{x} d x+\ln \left(x^{2}+y^{2}\right) d y \\ C: x=4+2 \cos \theta, y=4+\sin \theta \end{array} $$
Chapter 13: Problem 9
Use Green's Theorem to evaluate the line integral. $$ \begin{array}{l} \int_{C} 2 \arctan \frac{y}{x} d x+\ln \left(x^{2}+y^{2}\right) d y \\ C: x=4+2 \cos \theta, y=4+\sin \theta \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 31 and \(32,\) use a computer algebra system to evaluate the integral \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+6 y \mathbf{j}+y z^{2} \mathbf{k}\) \(C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\ln t \mathbf{k}, \quad 1 \leq t \leq 3\)
Evaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) arc on \(y=x^{3 / 2}\) from (0,0) to (4,8)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y)=3 x \mathbf{i}+4 y \mathbf{j}\) \(\quad C: \mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=\ln \left(x^{2}+y^{2}\right) \mathbf{i}+x y \mathbf{j}+\ln \left(y^{2}+z^{2}\right) \mathbf{k}\)
Find the area of the lateral surface (see figure) over the curve \(C\) in the \(x y\) -plane and under the surface \(z=f(x, y),\) where Lateral surface area \(=\int_{C} f(x, y) d s\) \(f(x, y)=y+1, \quad C: y=1-x^{2}\) from (1,0) to (0,1)
What do you think about this solution?
We value your feedback to improve our textbook solutions.