Chapter 13: Problem 74
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(C_{2}=-C_{1},\) then \(\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s=0\).
Chapter 13: Problem 74
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(C_{2}=-C_{1},\) then \(\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s=0\).
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\nabla f \cdot \mathbf{F} $$
Find \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) $$ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} $$
Evaluate the line integral along the given path. \(\int_{C} 8 x y z d s\) \(C: \mathbf{r}(t)=12 t \mathbf{i}+5 t \mathbf{j}+3 \mathbf{k}\) \(\quad 0 \leq t \leq 2\)
Find the work done by the force field \(\mathbf{F}\) on a particle moving along the given path. \(\mathbf{F}(x, y)=2 x \mathbf{i}+y \mathbf{j}\) \(C:\) counterclockwise around the triangle with vertices \((0,0),\) \((1,0),\) and (1,1)
Evaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) arc on \(y=x^{3 / 2}\) from (0,0) to (4,8)
What do you think about this solution?
We value your feedback to improve our textbook solutions.