Chapter 13: Problem 63
Let \(\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) and let \(f(x, y, z)=\|\mathbf{F}(x, y, z)\| .\) $$ \text { Show that } \nabla(\ln f)=\frac{\mathbf{F}}{f^{2}} $$
Chapter 13: Problem 63
Let \(\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) and let \(f(x, y, z)=\|\mathbf{F}(x, y, z)\| .\) $$ \text { Show that } \nabla(\ln f)=\frac{\mathbf{F}}{f^{2}} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=e^{x} \sin y \mathbf{i}-e^{x} \cos y \mathbf{j} & & (0,0,3) \\ \end{array} $$
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\mathbf{F}(x, y)=4 x \mathbf{i}-y^{2} \mathbf{j},\) then \(\|\mathbf{F}(x, y)\| \rightarrow 0\) as \((x, y) \rightarrow(0,0)\)
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=6 x^{2} \mathbf{i}-x y^{2} \mathbf{j}\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+(x-z) \mathbf{j}+x y z \mathbf{k}\) \(\quad C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}, \quad 0 \leq t \leq 1\)
Find the area of the lateral surface (see figure) over the curve \(C\) in the \(x y\) -plane and under the surface \(z=f(x, y),\) where Lateral surface area \(=\int_{C} f(x, y) d s\) \(f(x, y)=x^{2}-y^{2}+4, \quad C: x^{2}+y^{2}=4\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.