Chapter 13: Problem 63
Consider a wire of density \(\rho(x, y)\) given by the space curve \(C: \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b\) The moments of inertia about the \(x\) - and \(y\) -axes are given by \(I_{x}=\int_{C} y^{2} \rho(x, y) d s\) and \(I_{y}=\int_{C} x^{2} \rho(x, y) d s\) In Exercises 63 and \(64,\) find the moments of inertia for the wire of density \(\boldsymbol{\rho}\). A wire lies along \(\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, 0 \leq t \leq 2 \pi\) and \(a>0,\) with density \(\rho(x, y)=1\).