Chapter 13: Problem 6
Find the curl of the vector field \(F\). \(\mathbf{F}(x, y, z)=\arcsin y \mathbf{i}+\sqrt{1-x^{2}} \mathbf{j}+y^{2} \mathbf{k}\)
Chapter 13: Problem 6
Find the curl of the vector field \(F\). \(\mathbf{F}(x, y, z)=\arcsin y \mathbf{i}+\sqrt{1-x^{2}} \mathbf{j}+y^{2} \mathbf{k}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) \(\mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)
Define the curl of a vector field.
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\nabla f \cdot \mathbf{F} $$
Let \(\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) and let \(f(x, y, z)=\|\mathbf{F}(x, y, z)\| .\) Show that \(\nabla\left(\frac{1}{f}\right)=-\frac{\mathbf{F}}{f^{3}}\)
Find \(\operatorname{curl}(\mathbf{F} \times \mathbf{G})\) $$ \begin{array}{l} \mathbf{F}(x, y, z)=\mathbf{i}+2 x \mathbf{j}+3 y \mathbf{k} \\ \mathbf{G}(x, y, z)=x \mathbf{i}-y \mathbf{j}+z \mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.