Chapter 13: Problem 6
Evaluate the line integral along the given path. \(\int_{C} 4 x y d s\) \(C: \mathbf{r}(t)=t \mathbf{i}+(2-t) \mathbf{j}\) \(0 \leq t \leq 2\)
Chapter 13: Problem 6
Evaluate the line integral along the given path. \(\int_{C} 4 x y d s\) \(C: \mathbf{r}(t)=t \mathbf{i}+(2-t) \mathbf{j}\) \(0 \leq t \leq 2\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=\ln \left(x^{2}+y^{2}\right) \mathbf{i}+x y \mathbf{j}+\ln \left(y^{2}+z^{2}\right) \mathbf{k}\)
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=\ln (x y z)(\mathbf{i}+\mathbf{j}+\mathbf{k}) & & (3,2,1) \end{array} $$
Find the area of the lateral surface (see figure) over the curve \(C\) in the \(x y\) -plane and under the surface \(z=f(x, y),\) where Lateral surface area \(=\int_{C} f(x, y) d s\) \(f(x, y)=x^{2}-y^{2}+4, \quad C: x^{2}+y^{2}=4\)
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} & & (2,-1,3) \\ \end{array} $$
Evaluate \(\int_{C}\left(2 x+y^{2}-z\right) d s\) along the given path. \(C:\) line segments from (0,0,0) to (0,1,0) to (0,1,1) to (0,0,0)
What do you think about this solution?
We value your feedback to improve our textbook solutions.