Chapter 13: Problem 6
Determine whether or not the vector field is conservative. $$ \mathbf{F}(x, y, z)=\sin y z \mathbf{i}+x z \cos y z \mathbf{j}+x y \sin y z \mathbf{k} $$
Chapter 13: Problem 6
Determine whether or not the vector field is conservative. $$ \mathbf{F}(x, y, z)=\sin y z \mathbf{i}+x z \cos y z \mathbf{j}+x y \sin y z \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle moves along the path \(y=x^{2}\) from the point (0,0) to the point (1,1) . The force field \(\mathbf{F}\) is measured at five points along the path and the results are shown in the table. Use Simpson's Rule or a graphing utility to approximate the work done by the force field. $$ \begin{array}{|l|c|c|c|c|c|} \hline(x, y) & (0,0) & \left(\frac{1}{4}, \frac{1}{16}\right) & \left(\frac{1}{2}, \frac{1}{4}\right) & \left(\frac{3}{4}, \frac{9}{16}\right) & (1,1) \\ \hline \mathbf{F}(x, y) & \langle 5,0\rangle & \langle 3.5,1\rangle & \langle 2,2\rangle & \langle 1.5,3\rangle & \langle 1,5\rangle \\ \hline \end{array} $$
Find \(\operatorname{curl}(\operatorname{curl} \mathbf{F})=\nabla \times(\nabla \times \mathbf{F})\). \(\mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)
In Exercises 19 and \(20,\) find the total mass of two turns of a spring with density \(\rho\) in the shape of the circular helix \(\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+2 t \mathbf{k}\) \(\rho(x, y, z)=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)\)
Find the work done by the force field \(\mathbf{F}\) on a particle moving along the given path. \(\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}\) \(C:\) line from (0,0,0) to (5,3,2)
In Exercises 21-24, find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, \quad \rho(x, y)=x+y, \quad 0 \leq t \leq \pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.