Chapter 13: Problem 58
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(\mathbf{F} \times \mathbf{G})=(\operatorname{curl} \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\operatorname{curl} \mathbf{G}) $$