Chapter 13: Problem 54
Find \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) $$ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} $$
Chapter 13: Problem 54
Find \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) $$ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(C_{2}=-C_{1},\) then \(\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s=0\).
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(\mathbf{F} \times \mathbf{G})=(\operatorname{curl} \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\operatorname{curl} \mathbf{G}) $$
In Exercises 19 and \(20,\) find the total mass of two turns of a spring with density \(\rho\) in the shape of the circular helix \(\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+2 t \mathbf{k}\) \(\rho(x, y, z)=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)\)
Evaluate \(\int_{C}\left(x^{2}+y^{2}\right) d s\) \(C:\) counterclockwise around the circle \(x^{2}+y^{2}=4\) from (2,0) to (0,2)
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}, \quad \rho(x, y)=\frac{3}{4} y, \quad 0 \leq t \leq 1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.