Chapter 13: Problem 51
Evaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) arc on \(y=1-x^{2}\) from (0,1) to (1,0)
Chapter 13: Problem 51
Evaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) arc on \(y=1-x^{2}\) from (0,1) to (1,0)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\operatorname{div}(\mathbf{F} \times \mathbf{G})\) $$ \begin{array}{l} \mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{k} \\ \mathbf{G}(x, y, z)=x^{2} \mathbf{i}+y \mathbf{j}+z^{2} \mathbf{k} \end{array} $$
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{curl}(\nabla f)=\nabla \times(\nabla f)=\mathbf{0} $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(C_{2}=-C_{1},\) then \(\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s=0\).
Find the area of the lateral surface (see figure) over the curve \(C\) in the \(x y\) -plane and under the surface \(z=f(x, y),\) where Lateral surface area \(=\int_{C} f(x, y) d s\) \(f(x, y)=y, \quad C:\) line from (0,0) to (4,4)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) for each curve. Discuss the orientation of the curve and its effect on the value of the integral. \(\mathbf{F}(x, y)=x^{2} y \mathbf{i}+x y^{3 / 2} \mathbf{j}\) (a) \(\mathbf{r}_{1}(t)=(t+1) \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 2\) (b) \(\mathbf{r}_{2}(t)=(1+2 \cos t) \mathbf{i}+\left(4 \cos ^{2} t\right) \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.