Chapter 13: Problem 5
Determine whether or not the vector field is conservative. $$ \mathbf{F}(x, y, z)=y^{2} z \mathbf{i}+2 x y z \mathbf{j}+x y^{2} \mathbf{k} $$
Chapter 13: Problem 5
Determine whether or not the vector field is conservative. $$ \mathbf{F}(x, y, z)=y^{2} z \mathbf{i}+2 x y z \mathbf{j}+x y^{2} \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle moves along the path \(y=x^{2}\) from the point (0,0) to the point (1,1) . The force field \(\mathbf{F}\) is measured at five points along the path and the results are shown in the table. Use Simpson's Rule or a graphing utility to approximate the work done by the force field. $$ \begin{array}{|l|c|c|c|c|c|} \hline(x, y) & (0,0) & \left(\frac{1}{4}, \frac{1}{16}\right) & \left(\frac{1}{2}, \frac{1}{4}\right) & \left(\frac{3}{4}, \frac{9}{16}\right) & (1,1) \\ \hline \mathbf{F}(x, y) & \langle 5,0\rangle & \langle 3.5,1\rangle & \langle 2,2\rangle & \langle 1.5,3\rangle & \langle 1,5\rangle \\ \hline \end{array} $$
Find the total mass of two turns of a spring with density \(\rho\) in the shape of the circular helix \(\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+2 t \mathbf{k}\) \(\rho(x, y, z)=z\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y)=x y \mathbf{i}+y \mathbf{j}\) \(\quad C: \mathbf{r}(t)=4 \cos t \mathbf{i}+4 \sin t \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=\ln (x y z)(\mathbf{i}+\mathbf{j}+\mathbf{k}) & & (3,2,1) \end{array} $$
Evaluate \(\int_{C}(x+4 \sqrt{y}) d s\) along the given path. \(C:\) line from (0,0) to (3,9)
What do you think about this solution?
We value your feedback to improve our textbook solutions.