Chapter 13: Problem 48
Find \(\operatorname{curl}(\mathbf{F} \times \mathbf{G})\) \(\mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{k}\) \(\mathbf{G}(x, y, z)=x^{2} \mathbf{i}+y \mathbf{j}+z^{2} \mathbf{k}\)
Chapter 13: Problem 48
Find \(\operatorname{curl}(\mathbf{F} \times \mathbf{G})\) \(\mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{k}\) \(\mathbf{G}(x, y, z)=x^{2} \mathbf{i}+y \mathbf{j}+z^{2} \mathbf{k}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \nabla \times(f \mathbf{F})=f(\nabla \times \mathbf{F})+(\nabla f) \times \mathbf{F} $$
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=6 x^{2} \mathbf{i}-x y^{2} \mathbf{j}\)
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=\ln \left(x^{2}+y^{2}\right) \mathbf{i}+x y \mathbf{j}+\ln \left(y^{2}+z^{2}\right) \mathbf{k}\)
Evaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) line segments from (0,0) to (0,-3) and (0,-3) to (2,-3)
Use a computer algebra system to evaluate the integral \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\) \(C: \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+e^{t} \mathbf{k}, \quad 0 \leq t \leq 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.