Chapter 13: Problem 46
Define the divergence of a vector field in the plane and in
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 13: Problem 46
Define the divergence of a vector field in the plane and in
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+t \mathbf{k}, \quad \rho(x, y, z)=k z \quad(k>0), \quad 1 \leq t \leq 3\)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\nabla f \cdot \mathbf{F} $$
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+(x-z) \mathbf{j}+x y z \mathbf{k}\) \(\quad C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}, \quad 0 \leq t \leq 1\)
A particle moves along the path \(y=x^{2}\) from the point (0,0) to the point (1,1) . The force field \(\mathbf{F}\) is measured at five points along the path and the results are shown in the table. Use Simpson's Rule or a graphing utility to approximate the work done by the force field. $$ \begin{array}{|l|c|c|c|c|c|} \hline(x, y) & (0,0) & \left(\frac{1}{4}, \frac{1}{16}\right) & \left(\frac{1}{2}, \frac{1}{4}\right) & \left(\frac{3}{4}, \frac{9}{16}\right) & (1,1) \\ \hline \mathbf{F}(x, y) & \langle 5,0\rangle & \langle 3.5,1\rangle & \langle 2,2\rangle & \langle 1.5,3\rangle & \langle 1,5\rangle \\ \hline \end{array} $$
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) for each curve. Discuss the orientation of the curve and its effect on the value of the integral. \(\mathbf{F}(x, y)=x^{2} y \mathbf{i}+x y^{3 / 2} \mathbf{j}\) (a) \(\mathbf{r}_{1}(t)=(t+1) \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 2\) (b) \(\mathbf{r}_{2}(t)=(1+2 \cos t) \mathbf{i}+\left(4 \cos ^{2} t\right) \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.