Chapter 13: Problem 44
What is a conservative vector field and how do you test for it in the plane and in space?
Chapter 13: Problem 44
What is a conservative vector field and how do you test for it in the plane and in space?
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} & & (2,-1,3) \\ \end{array} $$
Find the work done by a person weighing 150 pounds walking exactly one revolution up a circular helical staircase of radius 3 feet if the person rises 10 feet.
In Exercises \(43-46,\) demonstrate the property that \(\int_{C} \mathbf{F} \cdot d \mathbf{r}=\mathbf{0}\) regardless of the initial and terminal points of \(C,\) if the tangent vector \(\mathbf{r}^{\prime}(t)\) is orthogonal to the force field \(\mathbf{F}\) \(\mathbf{F}(x, y)=y \mathbf{i}-x \mathbf{j}\) \(C: \mathbf{r}(t)=t \mathbf{i}-2 t \mathbf{j}\)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(\mathbf{F} \times \mathbf{G})=(\operatorname{curl} \mathbf{F}) \cdot \mathbf{G}-\mathbf{F} \cdot(\operatorname{curl} \mathbf{G}) $$
Evaluate the line integral along the given path. \(\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s\) $$ \begin{array}{c}C: \mathbf{r}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+8 t \mathbf{k} \\ 0 \leq t \leq \pi / 2\end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.