Chapter 13: Problem 41
In Exercises 41 and \(42,\) evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) for each curve. Discuss the orientation of the curve and its effect on the value of the integral. \(\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}\) (a) \(\mathbf{r}_{1}(t)=2 t \mathbf{i}+(t-1) \mathbf{j}, \quad 1 \leq t \leq 3\) (b) \(\mathbf{r}_{2}(t)=2(3-t) \mathbf{i}+(2-t) \mathbf{j}, \quad 0 \leq t \leq 2\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.