Chapter 13: Problem 33
State the Fundamental Theorem of Line Integrals.
Chapter 13: Problem 33
State the Fundamental Theorem of Line Integrals.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int_{C}\left(x^{2}+y^{2}\right) d s\) \(C:\) counterclockwise around the circle \(x^{2}+y^{2}=1\) from (1,0) to (0,1)
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} & & (2,-1,3) \\ \end{array} $$
Let \(\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) and let \(f(x, y, z)=\|\mathbf{F}(x, y, z)\| .\) $$ \text { Show that } \nabla(\ln f)=\frac{\mathbf{F}}{f^{2}} $$
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=x e^{x} \mathbf{i}+y e^{y} \mathbf{j}\)
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+3 t \mathbf{k}, \quad \rho(x, y, z)=k+z\) \((k>0), \quad 0 \leq t \leq 2 \pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.