Chapter 13: Problem 33
In Exercises 33-38, find the work done by the force field \(\mathbf{F}\) on a particle moving along the given path. \(\mathbf{F}(x, y)=-x \mathbf{i}-2 y \mathbf{j}\) \(C: y=x^{3}\) from (0,0) to (2,8)
Chapter 13: Problem 33
In Exercises 33-38, find the work done by the force field \(\mathbf{F}\) on a particle moving along the given path. \(\mathbf{F}(x, y)=-x \mathbf{i}-2 y \mathbf{j}\) \(C: y=x^{3}\) from (0,0) to (2,8)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=\sin x \mathbf{i}+\cos y \mathbf{j}+z^{2} \mathbf{k}\)
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \hline \mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k} & & (1,2,1) \\ \end{array} $$
Evaluate \(\int_{C}\left(x^{2}+y^{2}\right) d s\) \(C:\) counterclockwise around the circle \(x^{2}+y^{2}=4\) from (2,0) to (0,2)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \nabla \times(f \mathbf{F})=f(\nabla \times \mathbf{F})+(\nabla f) \times \mathbf{F} $$
Evaluate \(\int_{C}(x+4 \sqrt{y}) d s\) along the given path. \(C:\) line from (0,0) to (3,9)
What do you think about this solution?
We value your feedback to improve our textbook solutions.