Chapter 13: Problem 33
Determine whether the vector field \(F\) is conservative. If it is, find a potential function for the vector field. $$ \mathbf{F}(x, y, z)=\frac{1}{y} \mathbf{i}-\frac{x}{y^{2}} \mathbf{j}+(2 z-1) \mathbf{k} $$
Chapter 13: Problem 33
Determine whether the vector field \(F\) is conservative. If it is, find a potential function for the vector field. $$ \mathbf{F}(x, y, z)=\frac{1}{y} \mathbf{i}-\frac{x}{y^{2}} \mathbf{j}+(2 z-1) \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) parabolic path \(x=t, y=2 t^{2}\) from (0,0) to (2,8)
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=\sin x \mathbf{i}+\cos y \mathbf{j}+z^{2} \mathbf{k}\)
Consider a wire of density \(\rho(x, y)\) given by the space curve \(C: \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b\) The moments of inertia about the \(x\) - and \(y\) -axes are given by \(I_{x}=\int_{C} y^{2} \rho(x, y) d s\) and \(I_{y}=\int_{C} x^{2} \rho(x, y) d s\) Find the moments of inertia for the wire of density \(\boldsymbol{\rho}\). A wire lies along \(\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, 0 \leq t \leq 2 \pi\) and \(a>0,\) with density \(\rho(x, y)=y\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y)=3 x \mathbf{i}+4 y \mathbf{j}\) \(\quad C: \mathbf{r}(t)=t \mathbf{i}+\sqrt{4-t^{2}} \mathbf{j}, \quad-2 \leq t \leq 2\)
Use a computer algebra system to evaluate the integral \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}\) \(C: \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+e^{t} \mathbf{k}, \quad 0 \leq t \leq 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.