Chapter 13: Problem 31
Determine whether the vector field \(F\) is conservative. If it is, find a potential function for the vector field. $$ \mathbf{F}(x, y, z)=e^{z}(y \mathbf{i}+x \mathbf{j}+x y \mathbf{k}) $$
Chapter 13: Problem 31
Determine whether the vector field \(F\) is conservative. If it is, find a potential function for the vector field. $$ \mathbf{F}(x, y, z)=e^{z}(y \mathbf{i}+x \mathbf{j}+x y \mathbf{k}) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA particle moves along the path \(y=x^{2}\) from the point (0,0) to the point (1,1) . The force field \(\mathbf{F}\) is measured at five points along the path and the results are shown in the table. Use Simpson's Rule or a graphing utility to approximate the work done by the force field. $$ \begin{array}{|l|c|c|c|c|c|} \hline(x, y) & (0,0) & \left(\frac{1}{4}, \frac{1}{16}\right) & \left(\frac{1}{2}, \frac{1}{4}\right) & \left(\frac{3}{4}, \frac{9}{16}\right) & (1,1) \\ \hline \mathbf{F}(x, y) & \langle 5,0\rangle & \langle 3.5,1\rangle & \langle 2,2\rangle & \langle 1.5,3\rangle & \langle 1,5\rangle \\ \hline \end{array} $$
Find \(\operatorname{div}(\mathbf{F} \times \mathbf{G})\) $$ \begin{array}{l} \mathbf{F}(x, y, z)=\mathbf{i}+2 x \mathbf{j}+3 y \mathbf{k} \\ \mathbf{G}(x, y, z)=x \mathbf{i}-y \mathbf{j}+z \mathbf{k} \end{array} $$
Let \(\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) and let \(f(x, y, z)=\|\mathbf{F}(x, y, z)\| .\) Show that \(\nabla\left(\frac{1}{f}\right)=-\frac{\mathbf{F}}{f^{3}}\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}\) \(C: \mathbf{r}(t)=2 \sin t \mathbf{i}+2 \cos t \mathbf{j}+\frac{1}{2} t^{2} \mathbf{k}, \quad 0 \leq t \leq \pi\)
Evaluate \(\int_{C}(x+4 \sqrt{y}) d s\) along the given path. \(C:\) counterclockwise around the square with vertices (0,0) , \((2,0),(2,2),\) and (0,2)
What do you think about this solution?
We value your feedback to improve our textbook solutions.