Chapter 13: Problem 3
Sketch several representative vectors in the vector field. $$ \mathbf{F}(x, y, z)=3 y \mathbf{j} $$
Chapter 13: Problem 3
Sketch several representative vectors in the vector field. $$ \mathbf{F}(x, y, z)=3 y \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 31 and \(32,\) use a computer algebra system to evaluate the integral \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+6 y \mathbf{j}+y z^{2} \mathbf{k}\) \(C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\ln t \mathbf{k}, \quad 1 \leq t \leq 3\)
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \hline \mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k} & & (1,2,1) \\ \end{array} $$
Order the surfaces in ascending order of the lateral surface area under the surface and over the curve \(y=\sqrt{x}\) from (0,0) to (4,2) in the \(x y\) -plane. Explain your ordering without doing any calculations. (a) \(z_{1}=2+x\) (b) \(z_{2}=5+x\) (c) \(z_{3}=2\) (d) \(z_{4}=10+x+2 y\)
Evaluate the integral \(\int_{C}(2 x-y) d x+(x+3 y) d y\) along the path \(C\). \(C:\) arc on \(y=1-x^{2}\) from (0,1) to (1,0)
Demonstrate the property that \(\int_{C} \mathbf{F} \cdot d \mathbf{r}=\mathbf{0}\) regardless of the initial and terminal points of \(C,\) if the tangent vector \(\mathbf{r}^{\prime}(t)\) is orthogonal to the force field \(\mathbf{F}\) \(\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}\) \(C: \mathbf{r}(t)=3 \sin t \mathbf{i}+3 \cos t \mathbf{j}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.