Chapter 13: Problem 27
In Exercises 27 and 28 , prove the identity, assuming that \(Q, S,\) and \(\mathrm{N}\) meet the conditions of the Divergence Theorem and that the required partial derivatives of the scalar functions \(f\) and \(g\) are continuous. The expressions \(D_{\mathrm{N}} f\) and \(D_{\mathrm{N}} g\) are the derivatives in the direction of the vector \(\mathrm{N}\) and are defined by $$ D_{\mathrm{N}} f=\nabla f \cdot \mathrm{N}, \quad D_{\mathrm{N}} g=\nabla g \cdot \mathrm{N} $$ $$ \begin{array}{l} \iiint_{Q}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d V=\iint_{S} \int f D_{\mathrm{N}} g d S \\ {[\text { Hint: } \text { Use } \operatorname{div}(f \mathbf{G})=f \mathrm{div} \mathbf{G}+\nabla f \cdot \mathbf{G} .]} \end{array} $$