Chapter 13: Problem 24
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+3 t \mathbf{k}, \quad \rho(x, y, z)=k+z\) \((k>0), \quad 0 \leq t \leq 2 \pi\)
Chapter 13: Problem 24
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+3 t \mathbf{k}, \quad \rho(x, y, z)=k+z\) \((k>0), \quad 0 \leq t \leq 2 \pi\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} & & (2,-1,3) \\ \end{array} $$
Consider a wire of density \(\rho(x, y)\) given by the space curve \(C: \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b\) The moments of inertia about the \(x\) - and \(y\) -axes are given by \(I_{x}=\int_{C} y^{2} \rho(x, y) d s\) and \(I_{y}=\int_{C} x^{2} \rho(x, y) d s\) In Exercises 63 and \(64,\) find the moments of inertia for the wire of density \(\boldsymbol{\rho}\). A wire lies along \(\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, 0 \leq t \leq 2 \pi\) and \(a>0,\) with density \(\rho(x, y)=1\).
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}\) \(C: \mathbf{r}(t)=2 \sin t \mathbf{i}+2 \cos t \mathbf{j}+\frac{1}{2} t^{2} \mathbf{k}, \quad 0 \leq t \leq \pi\)
In Exercises 17 and 18 , evaluate \(\int_{C}\left(2 x+y^{2}-z\right) d s\) along the given path. \(C:\) line segments from (0,0,0) to (1,0,0) to (1,0,1) to (1,1,1)
Find the work done by the force field \(\mathbf{F}\) on a particle moving along the given path. \(\mathbf{F}(x, y)=x^{2} \mathbf{i}-x y \mathbf{j}\) \(C: x=\cos ^{3} t, y=\sin ^{3} t\) from (1,0) to (0,1)
What do you think about this solution?
We value your feedback to improve our textbook solutions.