Chapter 13: Problem 24
Find curl \(F\) for the vector field at the given point. $$ \mathbf{F}(x, y, z)=e^{-x y z}(\mathbf{i}+\mathbf{j}+\mathbf{k}) $$
Chapter 13: Problem 24
Find curl \(F\) for the vector field at the given point. $$ \mathbf{F}(x, y, z)=e^{-x y z}(\mathbf{i}+\mathbf{j}+\mathbf{k}) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \hline \mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k} & & (1,2,1) \\ \end{array} $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The vector functions \(\mathbf{r}_{1}=t \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 1,\) and \(\mathbf{r}_{2}=\) \((1-t) \mathbf{i}+(1-t)^{2} \mathbf{j}, 0 \leq t \leq 1,\) define the same curve.
Find the divergence of the vector field \(\mathrm{F}\). \(\mathbf{F}(x, y, z)=\ln \left(x^{2}+y^{2}\right) \mathbf{i}+x y \mathbf{j}+\ln \left(y^{2}+z^{2}\right) \mathbf{k}\)
A particle moves along the path \(y=x^{2}\) from the point (0,0) to the point (1,1) . The force field \(\mathbf{F}\) is measured at five points along the path and the results are shown in the table. Use Simpson's Rule or a graphing utility to approximate the work done by the force field. $$ \begin{array}{|l|c|c|c|c|c|} \hline(x, y) & (0,0) & \left(\frac{1}{4}, \frac{1}{16}\right) & \left(\frac{1}{2}, \frac{1}{4}\right) & \left(\frac{3}{4}, \frac{9}{16}\right) & (1,1) \\ \hline \mathbf{F}(x, y) & \langle 5,0\rangle & \langle 3.5,1\rangle & \langle 2,2\rangle & \langle 1.5,3\rangle & \langle 1,5\rangle \\ \hline \end{array} $$
In Exercises 13-16, evaluate \(\int_{C}(x+4 \sqrt{y}) d s\) along the given path. \(C:\) line from (0,0) to (1,1)
What do you think about this solution?
We value your feedback to improve our textbook solutions.