Chapter 13: Problem 24
Find a vector-valued function whose graph is the indicated surface. The ellipsoid \(\frac{x^{2}}{9}+\frac{y^{2}}{4}+\frac{z^{2}}{1}=1\)
Chapter 13: Problem 24
Find a vector-valued function whose graph is the indicated surface. The ellipsoid \(\frac{x^{2}}{9}+\frac{y^{2}}{4}+\frac{z^{2}}{1}=1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) and let \(f(x, y, z)=\|\mathbf{F}(x, y, z)\| .\) $$ \text { Show that } \nabla(\ln f)=\frac{\mathbf{F}}{f^{2}} $$
Demonstrate the property that \(\int_{C} \mathbf{F} \cdot d \mathbf{r}=\mathbf{0}\) regardless of the initial and terminal points of \(C,\) if the tangent vector \(\mathbf{r}^{\prime}(t)\) is orthogonal to the force field \(\mathbf{F}\) \(\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}\) \(C: \mathbf{r}(t)=3 \sin t \mathbf{i}+3 \cos t \mathbf{j}\)
Find \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) $$ \mathbf{F}(x, y, z)=x^{2} z \mathbf{i}-2 x z \mathbf{j}+y z \mathbf{k} $$
Find \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) \(\mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)
Consider a wire of density \(\rho(x, y)\) given by the space curve \(C: \mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b\) The moments of inertia about the \(x\) - and \(y\) -axes are given by \(I_{x}=\int_{C} y^{2} \rho(x, y) d s\) and \(I_{y}=\int_{C} x^{2} \rho(x, y) d s\) Find the moments of inertia for the wire of density \(\boldsymbol{\rho}\). A wire lies along \(\mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, 0 \leq t \leq 2 \pi\) and \(a>0,\) with density \(\rho(x, y)=y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.