Chapter 13: Problem 22
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}, \quad \rho(x, y)=\frac{3}{4} y, \quad 0 \leq t \leq 1\)
Chapter 13: Problem 22
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}, \quad \rho(x, y)=\frac{3}{4} y, \quad 0 \leq t \leq 1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeBuilding Design \(\quad\) The ceiling of a building has a height above the floor given by \(z=20+\frac{1}{4} x,\) and one of the walls follows a path modeled by \(y=x^{3 / 2}\). Find the surface area of the wall if \(0 \leq x \leq 40\). (All measurements are given in feet.)
Define a vector field in the plane and in space. Give some physical examples of vector fields.
Find \(\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})\) \(\mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\nabla f \cdot \mathbf{F} $$
Find the area of the lateral surface (see figure) over the curve \(C\) in the \(x y\) -plane and under the surface \(z=f(x, y),\) where Lateral surface area \(=\int_{C} f(x, y) d s\) \(f(x, y)=y+1, \quad C: y=1-x^{2}\) from (1,0) to (0,1)
What do you think about this solution?
We value your feedback to improve our textbook solutions.