Chapter 13: Problem 20
Find the total mass of two turns of a spring with density \(\rho\) in the shape of the circular helix \(\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+2 t \mathbf{k}\) \(\rho(x, y, z)=z\)
Chapter 13: Problem 20
Find the total mass of two turns of a spring with density \(\rho\) in the shape of the circular helix \(\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+2 t \mathbf{k}\) \(\rho(x, y, z)=z\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\operatorname{curl}(\operatorname{curl} \mathbf{F})=\nabla \times(\nabla \times \mathbf{F})\). \(\mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+(x-z) \mathbf{j}+x y z \mathbf{k}\) \(\quad C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}, \quad 0 \leq t \leq 1\)
In Exercises 31 and \(32,\) use a computer algebra system to evaluate the integral \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+6 y \mathbf{j}+y z^{2} \mathbf{k}\) \(C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\ln t \mathbf{k}, \quad 1 \leq t \leq 3\)
Evaluate the line integral along the given path. \(\int_{C} 8 x y z d s\) \(C: \mathbf{r}(t)=12 t \mathbf{i}+5 t \mathbf{j}+3 \mathbf{k}\) \(\quad 0 \leq t \leq 2\)
In Exercises 41 and \(42,\) evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) for each curve. Discuss the orientation of the curve and its effect on the value of the integral. \(\mathbf{F}(x, y)=x^{2} \mathbf{i}+x y \mathbf{j}\) (a) \(\mathbf{r}_{1}(t)=2 t \mathbf{i}+(t-1) \mathbf{j}, \quad 1 \leq t \leq 3\) (b) \(\mathbf{r}_{2}(t)=2(3-t) \mathbf{i}+(2-t) \mathbf{j}, \quad 0 \leq t \leq 2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.