Chapter 13: Problem 2
Find the curl of the vector field \(F\). \(\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+x^{2} \mathbf{k}\)
Chapter 13: Problem 2
Find the curl of the vector field \(F\). \(\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+x^{2} \mathbf{k}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 21-24, find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, \quad \rho(x, y)=x+y, \quad 0 \leq t \leq \pi\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y)=3 x \mathbf{i}+4 y \mathbf{j}\) \(\quad C: \mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y)=x y \mathbf{i}+y \mathbf{j}\) \(\quad C: \mathbf{r}(t)=4 \cos t \mathbf{i}+4 \sin t \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G} $$
Find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=t^{2} \mathbf{i}+2 t \mathbf{j}+t \mathbf{k}, \quad \rho(x, y, z)=k z \quad(k>0), \quad 1 \leq t \leq 3\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.