Chapter 13: Problem 19
In Exercises 17-22, evaluate \(\int_{S} \int f(x, y, z) d S\). $$ \begin{aligned} &f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}\\\ &S: z=\sqrt{x^{2}+y^{2}}, \quad x^{2}+y^{2} \leq 4 \end{aligned} $$
Chapter 13: Problem 19
In Exercises 17-22, evaluate \(\int_{S} \int f(x, y, z) d S\). $$ \begin{aligned} &f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}\\\ &S: z=\sqrt{x^{2}+y^{2}}, \quad x^{2}+y^{2} \leq 4 \end{aligned} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the line integral along the given path. \(\int_{C} 8 x y z d s\) \(C: \mathbf{r}(t)=12 t \mathbf{i}+5 t \mathbf{j}+3 \mathbf{k}\) \(\quad 0 \leq t \leq 2\)
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(C_{2}=-C_{1},\) then \(\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s=0\).
Find the divergence of the vector field \(\mathbf{F}\) at the given point. $$ \begin{array}{lll} \text { Vector Field } & & \text { Point } \\ \hline \mathbf{F}(x, y, z)=x y z \mathbf{i}+y \mathbf{j}+z \mathbf{k} & & (1,2,1) \\ \end{array} $$
Order the surfaces in ascending order of the lateral surface area under the surface and over the curve \(y=\sqrt{x}\) from (0,0) to (4,2) in the \(x y\) -plane. Explain your ordering without doing any calculations. (a) \(z_{1}=2+x\) (b) \(z_{2}=5+x\) (c) \(z_{3}=2\) (d) \(z_{4}=10+x+2 y\)
Prove the property for vector fields \(\mathbf{F}\) and \(\mathbf{G}\) and scalar function \(f .\) (Assume that the required partial derivatives are continuous.) $$ \operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\nabla f \cdot \mathbf{F} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.