Chapter 13: Problem 19
Determine whether the vector field is conservative. If it is, find a potential function for the vector field. $$ \mathbf{F}(x, y)=x e^{x^{2} y}(2 y \mathbf{i}+x \mathbf{j}) $$
Chapter 13: Problem 19
Determine whether the vector field is conservative. If it is, find a potential function for the vector field. $$ \mathbf{F}(x, y)=x e^{x^{2} y}(2 y \mathbf{i}+x \mathbf{j}) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+(x-z) \mathbf{j}+x y z \mathbf{k}\) \(\quad C: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+2 \mathbf{k}, \quad 0 \leq t \leq 1\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) where \(C\) is represented by \(\mathbf{r}(t)\) \(\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}\) \(C: \mathbf{r}(t)=2 \sin t \mathbf{i}+2 \cos t \mathbf{j}+\frac{1}{2} t^{2} \mathbf{k}, \quad 0 \leq t \leq \pi\)
Evaluate \(\int_{C} \mathbf{F} \cdot d \mathbf{r}\) for each curve. Discuss the orientation of the curve and its effect on the value of the integral. \(\mathbf{F}(x, y)=x^{2} y \mathbf{i}+x y^{3 / 2} \mathbf{j}\) (a) \(\mathbf{r}_{1}(t)=(t+1) \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq 2\) (b) \(\mathbf{r}_{2}(t)=(1+2 \cos t) \mathbf{i}+\left(4 \cos ^{2} t\right) \mathbf{j}, \quad 0 \leq t \leq \pi / 2\)
What is a conservative vector field and how do you test for it in the plane and in space?
In Exercises 21-24, find the total mass of the wire with density \(\boldsymbol{\rho}\). \(\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, \quad \rho(x, y)=x+y, \quad 0 \leq t \leq \pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.